首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   5篇
  国内免费   10篇
  13篇
综合类   3篇
植物保护   1篇
  2024年   4篇
  2023年   6篇
  2022年   4篇
  2021年   2篇
  2008年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
无人机点射式水稻播种装置控制系统设计与试验   总被引:1,自引:1,他引:0  
针对当前无人机水稻撒播难以成行成穴、落种易受旋翼风场干扰和播种均匀性不佳等问题,该研究结合点射式水稻播种装置和飞行控制器设计了一套播种控制系统,开发了配套的地面站功能,并制作了样机。控制系统基于PID算法实现排种器步进电机的转速闭环控制,通过标定模型对振动电机激振力和摩擦轮电机转速进行控制,并根据状态机设计播种控制程序。以3倍丸粒化稻种为对象,从播种量准确性、播种成行性和播种均匀性3个方面对样机的播种性能进行验证并优选合适的播种参数。试验结果表明:无人机模拟飞行的播种量准确性测试中,样机以1.0~2.5 m/s的作业速度进行播种时,播种量的平均相对误差小于4%,控制系统具有较好的动态调节能力。实地飞播测试中,样机以1.0和1.5 m的高度播种时,种子分布在12 cm种行宽度内的平均概率超过80%,成行性较好。考虑安全因素,优选1.5 m为样机的适宜作业高度。在作业高度为1.5 m,3倍丸粒化稻种的播种量为90~150 kg/hm2(对应裸种的播种量22.5~37.5 kg/hm2),作业速度为0.5~2.0 m/s时,播种均匀性变异系数为20.51%~35.52%。进一步分析发现,适当提升作业速度可提高播种均匀性。田间试验结果表明,播种量的相对误差分别为2.47%和4.12%,播种均匀性变异系数分别为22.17%和21.82%,种子破损率分别为0.34%和0.18%,满足相关标准的水稻飞播精度控制要求。研究结果可为无人机水稻直播技术提供参考。  相似文献   
2.
为探究气吸式播种机气力系统多分支汇流管路负压气流的流动规律,掌握管路总体压力损失与管路几何结构之间的关联特性,获取管路总体压力损失的定量预测目标值,该研究对多分支汇流管路气流流动状态进行分析,明确了影响管路气流流动的主要因素,采用单因素试验及Fluent仿真模拟,从宏观、微观尺度阐明多分支汇流管路中的气流流动规律及总流气压损失原因,通过量纲分析法建立了总体压力损失(ΔP,Pa)与空气密度(ρ,kg/ m3)、空气动力黏度(μ,Pa·s)、集管封闭端长度(L,mm)、入口支管1的入口流量(Q,m3/s)、入口支管内径(d,mm)、入口支管长度(l,mm)、入口支管间距(δ,mm)、集管内径(γ,mm)、出口支管内径(D,mm)和出口支管长度(Δ,mm)关系的经验公式。台架试验结果表明,所建立的经验公式应用范围为0.0009 m3/s≤Q≤0.0045 m3/s,28 mm≤d≤45.2 mm,100 mm≤l≤200 mm、200 mm≤δ≤300 mm, 42.6 mm≤γ≤81.4 mm,150 mm≤Δ≤250 mm,34 mm≤D≤42.6 mm、53.6 mm≤D≤57 mm,对多分支汇流管路总体压力损失的预测精度在经验公式计算值的10%以内。所建立的经验公式可为气吸式播种机多分支汇流管路的设计选型、结构优化提供参考。  相似文献   
3.
针对气力式水稻精量排种器充种不稳定、单粒播种精度不高和播种量大的问题,该研究设计了一种具有矩形吸种孔和辅助充种装置的气吸式杂交稻单粒排种器。根据“吉田优”型杂交稻的长短轴重力分布情况,确定排种盘吸种孔形状;基于CFD-DEM(Computational fluid dynamics, Discrete element method)流固耦合理论,以吸附力为指标,进行5类具有相同面积的吸种孔单因素仿真试验,确定吸附力最大的吸种孔规格为0.8 mm×2.25 mm;以该型吸种孔为基础,选取辅助充种角、工作转速和工作负压为试验因素,以单粒率S、多粒率M和漏播率L为试验指标,开展Box-Bhnken台架试验,对试验结果进行响应曲面分析和多目标优化,得到排种盘辅助充种角为80.90°、工作转速为42.65 r/min、工作负压为621 Pa时,排种器的单粒率为86.91%,漏播率为3.63%。验证试验结果的排种器单粒率为86.36%、漏播率为3.41%,与优化结果吻合。研究结果可为后续气吸式杂交稻单粒排种器的优化设计和直播机整机作业精度的提高提供指导。  相似文献   
4.
为提高无人驾驶履带式花生收获机沙地作业路径跟踪精度,以4HBL-2型自走式花生联合收获机为研究对象,开展了履带式收获机无人驾驶路径跟踪控制研究。建立了履带式收获机运动学模型与虚拟转向角函数关系;以航向偏差值作为观测量、阿克曼模型推算角速度作为测量值,设计卡尔曼融合算法,获得基于阿克曼模型的虚拟转向角度;根据虚拟转向角度对PID路径跟踪算法进行改进,提出了基于预瞄跟踪的双PID路径跟踪控制方法;通过脉冲宽度控制器实现了履带式花生收获机路径跟踪精准控制。仿真试验结果表明:基于预瞄跟踪双PID的路径跟踪控制方法能够进行路径跟踪控制,具有控制平滑和稳态误差小等特点。田间试验表明:花生收获机在沙地以0.6m/s的速度作业时,系统直线跟踪平均绝对误差为2.23 cm,最大偏差为4.14 cm,相对于PD路径跟踪控制器分别提高了56.12%和66.07%。上线试验中,初始偏差分别是0.5、1.0和1.5 m时,上线时间分别为11.00、12.92和13.78 s,上线距离为6.60、7.75和8.26 m;最大超调量分别为5.68%、5.84%和8.06%,相较于轮式收获机,上线距离分别减小了1.9...  相似文献   
5.
蔬菜类型多,种子尺寸差异大,为扩大排种器的适用范围,该研究提出一种基于扰种条辅助充种的蔬菜气吸轮式精量排种器。通过理论分析确定了排种器的关键结构参数,设计了一种带有坡度的扰种条结构,最薄处厚度为0.5 mm、最厚处厚度为1.0mm,并对充种阶段种子在扰种条上和清种阶段的受力情况分别进行分析,确定了扰种条和清种装置结构。选取菜心、萝卜和辣椒种子为试验对象,利用台架试验获得扰种条倾角和厚度的较优值;开展较优结构参数下的排种器充种性能试验,以工作负压、排种转速和清种距离为试验因素,进行三因素三水平正交试验。试验结果表明,对于菜心种子,工作负压为0.92 kPa,排种转速为13.3 r/min,清种距离为0.70 mm时,充种合格率为99.20%,漏吸率为0.13%;对于萝卜种子,工作负压为4.47 kPa,排种转速为25.5r/min,清种距离为1.20mm时,充种合格率为97.34%,漏吸率0.53%;对于辣椒种子,工作负压为1.49 kPa,排种转速为16.9 r/min,清种距离为0.69 mm时,充种合格率为88.27%,漏吸率为2.67%,满足菜心、萝卜、辣椒的种植农艺要求,研究结...  相似文献   
6.
为减少化学除草剂的使用,解决现有水田除草机械除草效果差等问题,该研究设计了一种水田行间除草装置,包括压草浮板和除草辊等结构,工作时压草浮板先将压倒杂草,紧接着除草辊将压倒的杂草压入泥中。压草浮板先将杂草压倒,除草辊将杂草压入泥中的几率可提高9.98%。除草辊两端设有倒角,在避免或减少对水稻根系损伤的同时可扩大行间除草区域,最大可增加常规除草宽度的3%。对压草浮板和除草辊进行了参数设计,通过仿真试验分析了行间除草装置与土壤之间的相互作用规律,确定最佳作业条件为入土深度35 mm,前进速度0.8 m/s。以未除草、化学除草、人工除草和不同参数的除草辊为试验因素,以水稻植株高度、产量、产量构成因素和水稻根系参数为试验指标,进行田间试验,试验结果表明,行间除草装置平均除草率最高为87.51%,可以翻动土壤,增加土壤透气性。与常规宽度的除草辊相比,增加除草宽度,扩大行间除草区域最大可提高除草率7.3个百分点。不同的除草处理对水稻植株高度和产量等有显著影响(P<0.05),机械除草可以促进水稻的生长发育,其产量可以达到甚至超过化学除草和人工除草水平。不同参数的除草辊对植株高度、产量和根系等有显著影响(P<0.05),增加除草辊宽度同时两端设倒角,可以减少对水稻根系的损伤,有利于水稻的生长发育,提高水稻产量。研究结果可为水田除草机械装备的研究提供参考。  相似文献   
7.
为提高多台无人化智能收获机和运粮车协同作业效率,该研究以2台不同型号水稻收获机和1台运粮车为研究对象,开展了智能农机多机协同收获作业控制方法研究。根据协同作业控制决策约束条件,建立协同收获作业中有限个状态过程的改进型连续时间马尔科夫链模型。以减少非作业时间为优化目标,通过模型预测未来一段时间内每台收获机的卸粮时间,动态更新每台收获机的卸粮顺序和时间。仿真试验结果表明:本文控制方法相对于仓满后再召唤运粮车的卸粮方式有效减少了作业时间,协同收获任务的农机平均作业时间减少了13.58%。田间试验结果表明:智能农机多机协同作业控制方法实现了2台水稻收获机和1台运粮车协同自主作业,在场景1中,相对于仓满召唤卸粮模式,收获机1和收获机2非作业时间分别减少了71.25%和42%,收获效率提高了6.65%和5.22%;在场景2中,相对于仓满召唤卸粮模式,收获机1和收获机2非作业时间分别减少了77.64%和37.09%,收获效率提高了12.07%和5.78%。本文提出的控制方法可以实现收获-卸粮转运自主作业,减少了收获机的非作业时间,提高了作业效率,可为无人农场智能收获协同作业提供支撑。  相似文献   
8.
为提高轮式拖拉机自动导航过程中转向控制的精度与稳定性,该研究以雷沃欧豹M704-2H拖拉机作为试验平台,采用电动方向盘作为转向执行机构,分析转向机械间隙对控制精度的影响,针对转向间隙特性设计转向控制算法。首先,为了获得准确的转向角,利用GNSS(global navigation satellite system)与二轮车模型快速标定虚拟轮转角,标定结果表明:虚拟轮转角的最大误差为1.3°,平均误差为0.11°。然后,对转向系统的机械间隙进行分析,设计一种带有间隙补偿的模糊PD(proportional derivative)转向控制算法,并在Simulink中验证算法的可行性。实车试验结果表明,该算法跟踪方波转角信号的响应时间为1.1 s,最大稳态误差为0.65°,平均稳态绝对误差为0.132°。跟踪正弦波转角信号的平均延时为0.5 s,最大误差为1.91°,平均绝对误差为1.09°。与无间隙补偿算法相比,有间隙补偿算法跟踪方波信号最大稳态误差减小了0.022°,平均稳态绝对误差减少了0.112°,角度误差在±0.2°内的时间提升了71%;跟踪正弦波信号最大误差减小了0.68°,平均绝对误差减小0.23°。田间直线导航转向控制试验结果表明,转角跟踪的绝对平均误差为0.61°,最大跟踪误差为2.82°,转向控制跟踪精度较高,稳定性好,满足导航作业需求。  相似文献   
9.
施肥无人机槽轮式排肥器槽轮结构参数优选   总被引:3,自引:2,他引:1  
现有槽轮式排肥器存在低转速下脉动性较强和排量范围较小的问题,较难满足农用无人机低空高速施肥对大排量范围以及排量连续性和准确性的要求。针对以上问题,该研究设计了凹槽形状和凹槽列数不同的排肥槽轮,并利用EDEM仿真模拟和台架试验测试了各槽轮的排量范围以及排肥时的脉动性和准确性,优选出满足无人机施肥要求的排肥槽轮。仿真结果表明,转速为10~40 r/min时,凹槽的截面形状和列数对脉动性影响较大,且直槽槽轮的脉动性较为明显,外切4列和内切5列对脉动的幅度和时间间隔的影响最小。台架试验结果表明,转速为40~120 r/min时,各槽轮排放复合肥和尿素的排量均在17 kg/min以上,且均随转速的增大而增大,能够满足无人机施肥时对排量的需求。方差分析表明凹槽截面形状和凹槽列数的主效应和交互作用对排量的影响均显著(P=0.000),而且会受到转速的干扰。对于复合肥,外切6列、直槽6列和外切5列槽轮的变异系数波动最小,基本稳定在1%以内;内切4列、内切6列和外切4列槽轮的变异系数波动范围稍大,但均在3%以内。对于尿素,内切4列和直槽4列的变异系数波动较大,排量准确性较差,内切6列和直槽6列槽轮的变异系数波动较小,基本稳定在1%以内;直槽5列、内切5列、外切4列、外切5列和外切6列槽轮的变异系数波动范围基本在1%~2%。综合低转速下的排量脉动性和高转速下的排量准确性,为了确保不同转速下的排肥效果,施肥无人机排放复合肥时可选择外切4列槽轮,排放尿素时可选择外切4列或内切5列槽轮。该研究可为施肥无人机的排肥性能研究提供参考。  相似文献   
10.
我国智能农机的研究进展与无人农场的实践   总被引:6,自引:1,他引:5  
智慧农业是现代农业的高级形式,无人农场是实现智慧农业的重要途径,智能农机是无人农场的物质支撑。本文以植物生产为例,介绍了智能农机的智能感知、自动导航、精准作业和智慧管理4项功能在智慧农业中的地位和关键技术的研究进展;介绍了华南农业大学集成相关智能农机创建水稻无人农场的实践和无人农场的5个特点,包括耕种管收生产环节全覆盖、机库田间转移作业全自动、自动避障异况停车保安全、作物生产过程实时全监控和智能决策精准作业全无人。在2020年的中稻和2021年的早稻生产中,水稻无人农场的稻谷产量均高于当地的平均产量,表明了其巨大的发展潜力。无人农场的建设为解决“谁来种田”和“如何种田”的问题提供了重要途径。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号